
1. daisy:268 (Plakosh, Daniel)

Consistent Memory Management Conventions
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005 Pearson Education, Inc.

2005-09-27

The most effective way to prevent memory problems is to be disciplined in writing memory
management code. The development team should adopt a standard approach and apply it consistently.

Development Context

Dynamic memory management

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc(), calloc(), realloc(), and free()
[ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer
overflow in the heap, writing to already freed memory, and freeing the same memory multiple times
(e.g., double-free vulnerabilities).

Description

The most effective way to prevent memory problems is to be disciplined in writing memory
management code. The development team should adopt a standard approach and apply it consistently.
Some good practices include the following:

• Use the same pattern for allocating and freeing memory. In C++, perform all memory allocation in
constructors and all memory deallocation in destructors. In C, define create() and destroy() functions
that perform an equivalent function (e.g., initialize data structures and allocate and free memory and
other resources).

• Allocate and free memory in the same module, at the same level of abstraction. Freeing memory in
subroutines leads to confusion about if, when, and where memory is freed.

• Match allocations and deallocations. If there are multiple constructors, make sure the destructors can
handle all possibilities.

Consistent Memory Management Conventions 1
ID: 476 | ######: 3 | ####: 25.04.06 10:23:44

daisy:268

15. http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

Steadfast consistency is often the best way to avoid memory errors. MIT krb5 Security Advisory
2004-00215 provides a good example of how inconsistent memory management practices can lead to
software vulnerabilities:

In the MIT krb5 library, in all releases up to and including krb5-1.3.4, ASN.1 decoder functions and
their callers do not use a consistent set of memory management conventions. The callers expect the
decoders to allocate memory. The callers typically have error-handling code which frees memory
allocated by the ASN.1 decoders if pointers to the allocated memory are non-null. Upon encountering
error conditions, the ASN.1 decoders themselves free memory which they have allocated, but do not null
the corresponding pointers. When some library functions receive errors from the ASN.1 decoders, they
attempt to pass the non-null pointer (which points to freed memory) to free(), causing a double-free.

This example also shows the value of setting dangling pointers to null.

References

[ISO/IEC 99] ISO/IEC. ISO/IEC 9899 Second edition
1999-12-01 Programming languages — C.
International Organization for Standardization,
1999.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006
by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All
rights reserved. It is reprinted with permission and may not be further reproduced or distributed without
the prior written consent of Pearson Education, Inc.

####

########

Copyright Holder Pearson Education

####

########

is-content-area-overview false

Content Areas Knowledge/Coding Practices

SDLC Relevance Implementation

Workflow State Publishable

Consistent Memory Management Conventions 2
ID: 476 | ######: 3 | ####: 25.04.06 10:23:44

http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt
http://web.mit.edu/kerberos/advisories/MITKRB5-SA-2004-002-dblfree.txt

